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ABSTRACT 

In accordance with Phase I of J P L  Contract No. 95136, 

this report  covers the Prototype Computer Program Definition 

for the mathematical e r r o r  model of the Approach Guidance 

System. The Prototype Computer Program Definition pre- 

sented will simulate the observations to be taken by the 

Approach Guidance System. A description of the overall 

program layout and of each subroutine i s  presented. 
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Program variable defined in subroutine A 

Wedge angle, nominally 6°39'04'' see Figure 19 
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viii 



-- . 

' 

NOMENCLATURE (Continued) 

' 0  

a 

KP, KP' n n  

s l  K:, Kn 

N+P 

Nc$ tM 

N+Y 

pa, b, c 

pT 

R 

Ri ,  F 

Ri, G 

R. 
1, s 

Planet tracker polynomial coefficients f o r  converting 
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volts to mrad respectively 

Auxiliary Sun sensor ,polynomial coefficients f o r  
converting mrad to volts and volts to mrad 
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measured cone angle 
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Index of refraction for  space (1. 0) see Figure 19 
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T 
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T i  
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NOMENCLATURE (Continued) 

Rotation matrix from body-fixed spacecraft coor- 
dinates to celestially-fixed spacecraft coordinates T2 

=3 Rotation matrix f rom cele stially-fixed spacecraft 
coordinates to the abc coordinates 

U 

w 
Variable used in subroutine E 
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of vehicle rate 
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wedge cone angle 
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CY Auxiliary Sun sensor electrical  null drift coefficient 

Angular misalignments of the cone axis and cross -  
cone axis, respectively c+’ 4cx CY 

Planet tracker combined mechanical and electrical 
thermal drift coefficient d CY 

S Auxiliary Sun sensor thermal alignment electrical 
drift coefficient 

C 

dN CY Canopus tracker nominal combined mechanical and 
electrical thermal drift coefficient 

Planet tracker thermal drift coefficient-,power supply 
voltage variations f 2  

CY 

Planet tracker thermal drift coefficient-power supply 
frequency variations 

CY 
g2 

Dynamic scale-factor e r r o r  (Y i 

xi 

~- 



k (Y 

a, n 

(Y 
0 

0 

E 
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Variables used in  subroutines A, By Cy and D 

Pitch, yaw, roll initial angles in spacecraft body axis 

Pitch, yaw, roll initial angular rates in spacecraft 
body axis 

Pitch, yaw, and roll angles in spacecraft body axis 
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Fore pr ism angle standard deviation fo r  A3 

Fore .prism angle standard deviation fo r  A4 

Fore pr i sm angle standard deviation for A5 

Canopus tracker null ,plane misalignment standard 
deviation 

Cano.pus tracker electrical  thermal alignment drift  
standard deviation 

Auxiliary Sun sensor accumulated null axis drift 
due to detector aging standard deviation 

Canopus tracker mechanical thermal alignment 
drift standard deviation 
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voltage standard deviation 
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Planet tracker power supply voltage variation 
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1. INTRODUCTION AND SUMMARY 

This report for  the Prototype Computer P rogram Definition for the 

Approach Guidance System is based on the mathematical e r r o r  models 

presented in Reference 1 and i s  submitted in accordance with Phase I of 

J P L  Contract No. 951936. The report describes the formulation and 

grouping of subroutines required to produce simulated observation data 

for  the Ap,proach Guidance System. 

corresponding statistical distribution i s  presented in Reference 1. 

A description of the e r r o r s  and their  

Approval by JPL of this document will constitute acce.ptance of the 
Prototype Computer P rogram Definition of the Approach Guidance System. 



2 .  PROTOTYPE COMPUTER PROGRAM PURPOSE AND DESCRIPTION 

The purpose of the Prototype Computer P rogram i s  to simulate the 

Approach Guidance System measurements. The measurements will be 

used to estimate the spacecraft 's orbit. A description of the Approach 

Guidance System and the sensors for establishing a celestial  coordinate 

reference i s  presented in Figure 1. 

system illustrated in Figure 1 i s  established through Sun sensors  that 

lock on the Sun and a Canopus tracker that locks on the s t a r  Canopus. 

The LOS angle measurements a re  obtained through a planet t racker  that 

locks on and tracks the planet. 

The quasi-inertial celestial reference 

The Approach Guidance System provides five angles. Two angles 

define the LOS direction to the planet relative to the spacecraft 's  coordi- 

nate system. The other three angles define the pitch, yaw, and roll 

positions due to the limit cycle motion of the spacecraft coordinate system 

with respect to a coordinate system defined by the current  directions f rom 

the spacecraft to the Sun and Canopus. 

five angles yields the direction from the spacecraft to the planet with 

respect to the S m  and Canopus. 

The proper combination of these 

2 . 1  PROTOTYPE COMPUTER PROGRAM DEFINITION 

The overall information flow for the Prototype Computer Program . 

(PCP) is presented in Figure 1. 

logic to process the input trajectory tape to produce simulated Approach 

Guidance System observation data fo r  a selected segment of the input 

trajectory tape. 

capability to Monte Carlo have been incorporated. 

tion required f rom the trajectory tape for each time interval i s  relatively 

small (Table 1) but dispersed throughout each record. 

running t ime, especially when one wishes to Monte Carlo, an option has 

been provided to generate an auxiliary tape containing only necessary 

information extracted f rom the original trajectory tape. 

the option of selecting either the original trajectory tape o r  the condensed 

version trajectory tape. The capability to linearly interpolate among 

trajectory data points stored on the trajectory tape has been included 

and provides the potentiality of selecting desired observation time 

The P C P  a s  shown has the necessary 

Provisions for  possible future applications of the P C P ' s  

The volume of informa- 

To minimize 

The user  has  

2 
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Figure 1. Celestial and Planet Tracker Reference 
Coordinate System 

.L AXIS) 

Table 1. Information Required f rom the 
Trajectory Tape 

Time (t), sec 

Planet-Probe-Sun Angle ( P n ) ,  deg 

Angular semidiameter of planet ($(t)), deg 

Canopus-Probe-Sun angle (Pc) ,  deg 

Canopus clock angle earth center (Q E ), deg 

Target clock angle earth center (cy E ) ,  deg 

C 

T 

3 



a 

increments. Since the interpolation i s  l inear,  the linear assumptions 

should not be violated when selecting time intervals on the trajectory tape. 

In the original trajectory tape mode the tape is  initially positioned 

at  a specified trajectory starting time, which becomes the f i r s t  record 

to be ,processed. Record processing involves four basic steps: 

a. Extracting required trajectory data and sorting i t  into 
proper computer areas 

b. Generating the observations called for by the simulation 

c .  Storing the observations on tape 

d. Printing the observations at prespecified time intervals 

Each trajectory record (time point) i s  processed in this manner until the 

trajectory time i s  equal to, o r  greater than, a specified end time. 

In the auxiliary trajectory tape mode the original trajectory tape 

is positioned through input s tar t  and end times. The original trajectory 

tape i s  read and only information required to compute the observation is 

stored sequentially in a temporary storage a rea .  

information i s  transferred in  block form onto the auxiliary trajectory 

tape. After transferring the trajectory information for  the required time 

interval, the program returns to the primary mode and processes the 

auxiliary tape using the four basic steps described above. 

When the a rea  is filled, 

Program termination is effected by a counter that advances on 

completion of each trajectory time segment (e. g. , 10 days). 

cycle through the trajectory time segment i s  called, the p r o g r a m  re -  

initializes the processing loop  according to the mode of operations under 

which i t  has been executed. Both modes, either original o r  auxiliary, call 

the initialization routine and compute all specified parameters.  

When another 

The general information flow for  the P C P  i s  presented in Figure 2;  

and the linear interpolation subroutine, REDTAP, i s  illustrated in 

Figure 3 .  

the Approach Guidance System observation data. 

Subroutine OBS contains all routines required to simulate 

4 
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F igure 2. Approach Guidance Prototype Computer Program Flow Diagram 
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Figure 2. Approach Guidance Prototype Computer Program 
F low Diagram (Concluded) 
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F r o m  Tape 

Enter 

Read F i r s t  Two 
Tra j ec to ry  Data 

Records 

Exit 

Reset 
Init ial  Entry 

< Rewind the 
Trajectory Tape ' 

. 

TOBS Equals 
T ra j ec to ry  Start T i m e  

NO ' 

Linear  F i t  Of Input 
Data From Tape 

- 

Increment  the 
Tra j ec to ry  S ta r t  

T ime  

Added 

ri Pr in t  S t a r t  T ime  

Reset  Trajectory 
Data Storage Pointer 

Read Next 
Trajectory 
Record and 
Call Tread 7 

Reset  the Next and 
L a s t  Tape T imes  

F igure 3. Subroutine REDTAP 
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2 .1 .  1 Input/Output Description 

The information required to produce simulated observation data of 

the Approach Guidance System consists of a trajectory tape and card 

input data. 

trajectory information a s  a function of time. 

that i s  required i s  listed in Table 1. 

e r r o r  sources, all nominal input values, and program control input data 
(see Table 3 ) .  The output values a r e  found in Table 3 .  

2.  1 . 2  Program Control Input Data 

The trajectory tape contains the necessary nominal spacecraft 

The spacecraft information 

The card input data consist of all 

Control of the program i s  maintained through a set of variables that 

a r e  presented in Table 2 and defined in the nomenclature. 

will be input under the namelist name INPUT. 

the following: START, LRAND, KOMPAC, MAXCYC, END, SPACE, 

NLIST, INLIST, NENTRY, NWDS, LISTOB, WRITOB, and NWORDS. 

These variables 

The variables consist of 

2 . 1 . 3  Subroutine INITIAL 

The computation of all  bias e r r o r s  and various parameters that a r e  

representative of a mission a re  computed in subroutine INITIAL (see 

Figure 4).  

but vary from mission to mission. 

ground processing a r e  selected prior to a mission; hence, they vary 

only f rom mission to mission. To facilitate the identification of the 

bias e r r o r s  and the parameters computed, they have been grouped into 

four  blocks: 

The bias e r r o r s  computed do not change during a mission, 

Parameters  that a r e  selected for 

a .  Canopus related values 

b. Auxiliary Sun sensors '  related values 

c.  Planet tracker optical system related values 

d. Planet t racker  electronics related values 

2.1.3.1 Sub routine RN2S 

Independent random numbers, normally distributed with mean zero 

and standard deviation unity, are generated in subroutine RN2S. The 

method used produces normal deviates in independent pairs by the 

formulas 
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x1 = (-2 log u1)1’2 cos (2.rru2) 

x2 = (-2 log u 1) 1’2 sin (2.rru2) 

where u and u a r e  uniformly distributed pseudo-random numbers on 

the interval (0, 1). The u and u numbers a r e  generated in subroutine 

RNDV. 
Appendixes A and B, respectively. 

1 2 

1 2 
A description of subroutines RN2S and RNDV i s  presented in 

Table 3. Output Values 

% 
pt 
A 

Tt 

t 

“ t  

pt 

2. 1 .4 Subroutine OBS 

Subroutine OBS (see Figure 5) contains all routines necessary to 

simulate the Approach Guidance System. In order to provide flexibility 

f o r  possible future changes and to ease program development, OBS has 

been subdivided into a number of convenient subroutines. 

routine was designed with a specific unique function. 

future a particular function i s  to be modified or  changed, i t  can be done 

independently and then substituted in the ‘program. 

Each sub- 

Hence, i f  in the 

2. 1 . 4 . 1  Subroutine LIMCYC 

The spacecraft attitude i s  not fixed in space; it i s  only confined by 

a limit cycle. 

spacecraft motion within this limit cycle must be compensated. In order  

to  do so, subroutine LIMCYC (see Figures 6 through 9 )  has been specifi- 

cally designed to produce a set of angles representing spacecraft body 

axis rotation during limit cycling. 

tion flow as  presented in these figures i s  available in Reference l. 

Therefore, to measure the required LOS angles, the 

A detailed description of the informa- 
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E N T E R  

LIMCYC P 
P Y R T R A  Q 
CANOP r;7 
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I 2 RAY I 

P L A N E T  9 
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Figure 5. Subroutine OBS-Contains a l l  Routine Required to 
Simulate the Approach Guidance System 
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1 

Figure 6. Limit Cycle Model Computer Flow Diagram 
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Figure 6. Limit Cycle Model Computer Flow Diagram 
(C onc luded) 
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SUBROUTINE C 

Figure 7. Two-Pulse One-sided Disturbed Limit Cycle and 
Undisturbed Limit Cycle Coefficients Subroutines 
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SUBROUTINE D 

Figure 8. Disturbed Two-Pulse and Undisturbed Limit 
C yc 1 e A t ti  tude P r e di c t i  on Sub r out ine 
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Figure 9. Multipulse Limit Cycle Attitude Prediction Subroutine 
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2 . 1 . 4 . 2  Subroutine PYRTRA 

The body axis motion within the limit cycle will be recorded by the 

auxiliary Sun sensors and Canopus t racker .  Therefore, the body axis 

angles must be expressed in te rms  of the auxiliary Sun sensors and 

Canopus tracker angle measurements. In order to do so,  subroutine 

PYRTRA (see Figure 10) transforms the body axis angles computed in 

LIMCYC to angles-measured by the auxiliary Sun sensor and Canopus 

tr,acker. The derivation of this transformation has been presented in 

Reference 2. 

2 . 1 . 4 . 3  Subroutine GEOM 

To simulate the planet tracker optics, the LOS angles will be 

expressed with respect to  the optics axis. The difference between the 

planet tracker axis and the optics axis i s  the rotation of the LOS which 

is due to the fore prism a s  shown in Figure 19. The effect i s  to rotate 

the cone angle through the angle A5. 

the LOS angles between the spacecraft and planet. 

angles, the LOS vector with respect to spacecraft coordinates will be 

derived from the trajectory data, orientation of the spacecraft 's body 

axis with respect to a quasi-inertial axis, limit cycle motion, and 

orientation of the planet tracker with respect to the spacecraft body 

axis.  

11)  computes the planet tracker LOS cone and cross-cone angles and 

angle rates.  

In modeling the LOS measurements by the planet tracker there exists an 

error due to LOS motion within the limit cycle and the relative motion 

of the spacecraft with respect to the planet. Since this motion will be 

small  fo r  the region in which the planet t racker  can effectively operate, 

the LOS angular rates a r e  based on differencing the previous and current 

angles and dividing by the time interval. 

The planet tracker will measure 

To simulate the LOS 

In order to provide the LOS angles subroutine GEOM (see Figure 

The derivation of the equations is presented in Reference 3 .  

2 . 1 . 4 . 4  Subroutine CANOP 

Since a number of e r rors  in the Canopus t racker ,  auxiliary Sun 

sensors ,  and planet t racker  a re  due to temperature, a re,presentative 

simulation of temperature i s  computed through the equation 
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ENTER WITH 

e , e  OR, Y, Pc 
P Y)  

C = cos y sin p C = sin y sin p c,  CR = -cos pc P c’ Y 

Figure 10. Subroutine PYRTRA-Computes Pitch, Yaw, and Roll 
a s  Measured by the Auxiliary Sun Sensor and Canopus 
Tracker  
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Exit With Kl 
Figure 11. Subroutine GEOM-Computes Planet Tracker 

Cone and Cross-Cone Angles 
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Tt = ATt t T 

where 

ATt = pATt - t RN2S (uT)  . 

The equation consists of am average o r  nominal temperature value, T, 

and the variation about T .  The variation about T is due to random 

fluctuation expressed by RNZS (u ) and correlation to the ,previous temper- 

ature measurement expressed by  PAT^-^. 
angles designated a s  roll is provided by the Canopus tracker.  

of the ro l l  angle as  measured by the Canopus tracker i s  done in subroutine 
CANOP (see Figure 12). 

for the Canopus tracker have been derived from and explained in  Reference 

1.  The e r r o r  sources consist of a bias which is computed in subroutine 

INITIAL, temperature dependent e r r o r s ,  and random e r ro r s .  

resulting noised angle, which represents roll  a s  measured by the Canopus 

t racker ,  is expressed in mrad. 

T 
Motion of one of the limit cycle 

Modeling 

The equations representing the e r r o r  sources 

The 

2 . 1 . 4 . 5  Subroutine AXSUN 

Motion of two limit cycle angles designated a s  pitch and yaw i s  

provided by the auxiliary Sun sensors. 

angles as  measured by the auxiliary Sun sensors is done in subroutine 

AXSUN (see Figure 13). 

have been derived and explained in  Reference 1. 

consist of a bias which i s  computed in subroutine INITIAL, temperature 

dependent e r r o r s ,  and random e r r o r s .  The resulting noised angles 

which represent pitch and yaw as measured by the auxiliary Sun sensors 

a r e  expressed in mrad.  

Modeling of the pitch and yaw 

The equations representing the e r r o r  sources 

The e r r o r  sources 

2 .1 .4 .6  Subroutine 2RAY 

Subroutine 2RAY (see Figures 14 through 17)  computes planet t racker  

wedge angles which represent the LOS angles. 

gimbal configuration i s  presented in Figure 19. 
the LOS ray through the optics. 

until the incoming ray is parallel to the planet t racker  null axis. Subroutine 

BEND t races  the ray through a reflection surface while subroutine BOUNCE 

The planet t racker  optical 

Subroutine AGOPT t races  

The X-axis and Y-axis wedges a r e  rotated 
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I E n t e r  Wi th  I 

Figure 12. Subroutine C A N O P  - Computes Roll Angle as 
Measured by the Canopus Tracker  
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Figure 13. Subroutine AXSUN-Computes Pitch and Yaw as 
Measured by  the Auxiliary Sun Sensors 
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V2  = V i  = Sin xt - C o s  xt Sin +t V 3  = C o s x t  C o s  JI, - 

a 

I E n t e r  Wi th  

J 

AGOUT 7 
Figure 14. Subroutine 2RAY - T r a c e s  the Line-of-Sight R a y  

Through the Planet Tracker Optics 
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X = X t G (V3R2 - V2R3)/casX 

Y = Y + G (V,-Rl)lcos y 

Figure 15. Subroutine AGOUT -Computes the Line-of-Sight 
Angles a s  Measured by the Planet Tracker Wedges 

2 5  



I ENTER WITH 

CALL BEND (R,O,O 
SPACE - 1ST PRISM) 

- 1 CALL BEND TO TRACE RAY 
THROUGH WINDOW (SPACE - GAS) 

A . 

t CALL BEND TO TRACE RAY THROUGH 
THREE SURFACES (Y-AXIS WEDGE 1) 

h 

b 

CALL BEND TO TRACE RAY THROUGH 
THREE SURFACES (Y-AXIS WEDGE 2) 

h 

1 CALL BEND TO TRACE RAY THROUGH 
THREE SURFACES (X-AXIS WEDGE 1) I 

CALL BOUNCE 
(FACE 2 REFLECTION) 

CALL BEND TO TRACE RAY THROUGH 
THREE SURFACES (X-AXIS WEDGE 2) 

CALL BEND 
(R, 1 r / 2 ,  * = A5, PRISM +SPACE 

h 
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_I 

Figure 16 .  Subroutine AGOPT-Traces the Line- 
of -Sight Ray Through the Planet Tracker  
Optics 
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Figure 17. Subroutine BEND-Traces the Line-of-Sight 
Ray Through Refraction Optics 
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Figure 18. Subroutine BOUNCE-Traces the 
Line-of-Sight Ray Through a 
Reflection Surface 
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Figure 19. Planet Tracker Optical Gimbal Configuration 
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t races  the ray through a refraction surface. 

planet t racker  optics system as sketched in Figure 19 a r e  included. 

e r r o r s  have been identified and described in Reference 1. 

tion of the optical wedges is done through the use of subroutine AGOUT 

(see Figure 15). 

All e r r o r s  inherent with the 
The 

Modeling rota- 

Given the LOS vector, a ray i s  traced through the optics, 

the resulting LOS vector i s  compared with the given LOS vector, and the 

routine i s  exited when these match up within a specified tolerance. 

2. 4.4.7 Subroutine PLANET 

The measurements of the LOS angles that a r e  expressed a s  cone and 

cross-cone angles by the planet tracker a r e  obtained by rotating the optical 

wedges modeled in subroutine 2RAY. The electronics of the servomechan- 

i s m  loop and the electronics that lock on the planet, maintain lock on the 

planet, and establish the center of the planet a r e  modeled in subroutine 

PLANET (see Figure 20) which computes planet diameter and planet track- 

e r  cone and cross-cone wedge angles. 

sources have been derived and explained in Reference 1. 

consist of bias, temperature dependent e r r o r s ,  and random e r r o r s .  These 

e r r o r s  a r e  added to the planet tracker angles computed in 2RAY. 

modeled the angle measurements of the Canopus t racker ,  auxiliary Sun 

sensors ,  and planet t racker ,  the modeling of this final phase i s  done in  

subroutine ENCQ and ANGLE. 

ments, telemetering them t o  earth, and deriving the cone and clock angles 

that will constitute the observables to be used in orbit determination of the 

spacecraft. 

The equations representing the e r r o r  

The e r r o r  sources 

Having 

This consists of quantizing the measure- 

2. 1. 4.8 Subroutine ENCQ 

The quantization modeling of the Canopus t racker  roll  angle, auxiliary 

Sun sensors pitch and yaw angles, and the planet t racker  cone, cross-cone, 

and planet diameter angles is  done in  subroutine ENCQ (see Figure 21). 

The formulation is based on equations and e r r o r  sources presented in 

Reference 1. To avoid ambiguity when the encoded value is zero, the 

planet t racker  cone and cross-cone angles have been biased so that -6OO 

(-1.745 rad) i s  the zero digital state. 

auxiliary Sun sensors pitch and yaw angles have been biased such that 

-1.  0 volt i s  the zero digital state. 

The Canopus t racker  roll  angle and 
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EXIT WITH 

F i g u r e  20. Subroutine PLANET - Computes  Noised P lane t  T r a c k e r  
Cone and Cross-Cone  Angles 
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COMPUTE PLANET TRACKER DIGITAL STATES 
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CONVERT 1,. $,, $ FROM mrad T O  VOLT5 

, YES 6 (f'i "fYM NO , 

Figure 21. Subroutine ENCQ-Quantizes the Observation Data Taken 
by The Auxiliary Sun Sensors, Canopus Tracker ,  and 
Planet Tracker 
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Figure 22. Subroutine ANGLE-Computes Cone, Clock, Pitch, Yaw and 
Ro l l  as Derived f rom Measurements Taken by the Planet 
Tracker ,  Auxiliary Sun Sensors and Canopus Tracker 
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Figure 22. Subroutine ANGLE (Concluded) 
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2. I. 4. 9 Subroutine A.NGLE 

Subroutine ANGLE, Figure 22, computes cone, clock, and body axis 

angles based on Canopus tracker,  auxiliary Sun sensors,  and planet t racker  

measurements. 

route. 

Hence the decoding simulation i s  contained in this sub- 

The transformation from Canopus t racker  and auxiliary Sun measure-  

ments of roll, pitch, and yaw ( c + ~ ,  +p, + ) to body axis ( e  R, eP, e,) is 
based on the derivation presented in Reference 2. 

contained in subroutine THETA (Figure 23). 

Y 
The transformation is 

A 9R - cos p c  ((Ap cos cy t @ sin c y o )  
- O y .  A - 

sin p c  
0 

eR 

A 

P 0 

A A e = p y - @  e 
Y p Ro 

A A  A A 
@R - cos pC (0  cos cyo t 0 sin cy 0 ) - c e e sin CY 0 Y P Y  Y 

A 
P 

A 
- A 

sin p C - cos p c  (ep sin CY - 0 Y cos (Y 0 ‘R - 

C = sin CY sin (3 
0 C Y 

I E X I T  W I T H  I 

Figure 23. Subroutine THETA - Computes Body Axis Motion Within 
the Limit Cycle Which i s  Derived from Auxiliary Sun 
Sensors and Canopus Tracker Measurements 
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3 .  N E W  TECHNOLOGY 

No new technology was conceived o r  adapted for  usage during the 

development of the Prototype Computer Program. 
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APPENDIX A 

G5, IBMAP SUBROUTINE, RW RN2S (REVISED APRIL 15, 1963) 

Identification 

RW RN2S - Normal Random Number Generator 

Harley R. Stafford, * March 23, 19’61 
Space Technology LabDratories, Inc. 

7090 - IBMAP 

Purpo s e 

To generate independent random numbers, each normally distribut- 
ed with mean zero and .standard deviation unity, in floating point 
form. 

Re s t r ic t  ions 

Cycles every 2 numbers. 
33 

Method 

This subroutine uses CS RDMl Uniformly Distributed Pseudo- 
random Numbers to obtain uniformly distributed random numbers 
between zero and one, and transforms them using the equations 

xi = ( -2  loge u l p  c o s  (2nU2) 

x = ( - 2  log u 1 p 2  s in  (2ITU2) 2 e 

where u l  and u2 a r e  two random numbers obtained from RDMl, 

and where Xi and X a r e  two independent normally distributed 

random numbers with mean zero and standard deviatian unity. It 
is noted that these equations involve pairs of random numbers, al-  
though just one number is produced upon each entry to  the sub- 
routine . 

2 

Usage 

Calling Sequence: CALL RN2S (A, L)  
where A is the location of the resulting floating-point 

random number, and 

is the location of a twelve digit octal number 
which should be saved in octal fo rm from one 
machine run to  the next and restored in octal 

L 

:k Modified f o r  IBMAP by John Alexander, Space Technologies 
Laboratories, Inc. 

A-l  



form at the beginning of the subsequent mach- 
ine run in order  t o  continue the number gener- 
ating sequence. To s ta r t  the sequence, a fix- 
ed point octal one (1) at  a B of 35 should be 
loaded into L. 

Coding Information 

Timing: 668 machine cycles per  two random numbers. 

Space Requirements 

280 cells of program and constants. 

Number of Pages 

Write-up 2 
6 Listing - 

Total 8 
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APPENDIX B 

G5, CS RDMI (*REVISED JULY 30, 1959) 

Identification 

CS RDMl Uniformly Distributed Pseudo-random Numbers 
704 (SAP) and/or 709 (SCAT) 
C. Swift, October 1956 
Convair, San Diego 

PurDose 

To generate a uniformly distributed pseudo-randomnumber between 
zero and one. 

Re st rictions 

Cycles after 233 numbers. 

Method 

A new random number yi (in fixed point) is  generated f r o m  the pre-  

viously generated number y 

of the fixed point product 5 yi-l. 
2 3 3  o r  about IO9' '. The left most 27 bits of the 35 bit result a r e  

converted to a normalized floating point number between 2-28 and 

one. 

by taking the least  significant portion &-1 
This sequence has a period of 

Reference: National Bureau of Standards Report 3 3 7 0 ,  
Generation and Testing of Pseudo-random 
Numbers by Olga Taussky and John Todd. 

Usage 

Calling Sequence: TSX RDM, 4 

The next floating point pseudo-random number in the sequence is 
left in the accumulator. 

Coding Information 

1. No usable constants. 
2 .  Requires 10 storage locations. Does not use COMMON. 
3 .  Time: 480 microseconds. 
4. The fixed point random number (a positive integer scaled at  

3 5 )  is left in RDMt9. The programmer may res ta r t  the se-  
quence from one machine run to the next by saving C (RDMt 
9) before saving C (RDMt9) a t  the end of a machine run and 
restoring C (RDMt9) before entering the subroutine the f i rs t  
t ime on a subsequent machine run. 

* Calling sequence changed. Was RDMI 
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' 0  

Checkout 

Used in various problems. 
where on method. 

Statistical checks made here  and else- 

Number of pages 

Write-up I 
Listing - I 
Total 2 
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